USING OF MOLECULAR BIOLOGY METHODS FOR DETECTION OF APOLIPOROTEINE E GENE POLYMORPHISM

Natalija Vansevičienė¹, Algimantas Paulauskas²

Summary. Apolipoprotein E (apo E) is a protein that plays an essential role in lipid metabolism and distribution. The apo E gene is polymorphic, and has three alleles code for isoforms $\varepsilon 2$, $\varepsilon 3$, and $\varepsilon 4$, which differ by single-amino-acid substitutions. In the common apo $\varepsilon 3$ polymorphism, TGC encodes for Cys¹¹², and CGC encodes for Arg¹⁵⁸. In the apo $\varepsilon 2$ another TGC codon results in Cys¹⁵⁸, whereas in the apo $\varepsilon 4$ a different CGC codon gives rise to Arg¹¹². The three apo E alleles determine six genotypes, i.e., three homozygotes designated $\varepsilon 4/\varepsilon 4$, $\varepsilon 3/\varepsilon 3$, and $\varepsilon 2/\varepsilon 2$ and three heterozygotes designated $\varepsilon 3/\varepsilon 4$, $\varepsilon 2/\varepsilon 3$, and $\varepsilon 2/\varepsilon 4$. Early methods for detection of apo E isoforms were based on protein isoelectrofocusing. After the identification of the apo E gene molecular methods based on PCR amplification and *HhaI* digestion were introduced and later somewhat improved. However, all PCR-based assays are difficult to interpret because the *HhaI* enzyme yields several small fragments, not all of which are specific for the apo E genotypes. In this study we used two restriction enzymes, i.e., *AfIIII* and *HaeII*, that recognize the allele-specific nucleotide substitutions at codons 112 and 158, respectively, and do not recognize additional sites.

As expected, simultaneous digestion of the 218-bp amplified product yielded on 3% agarose gel electrophoresis 145-bp, 168-bp, and 195-bp fragments that were specific for apo ϵ 3, ϵ 2, and ϵ 4, respectively. All six possible genotypes for apo E, i.e., ϵ 2/ ϵ 4, ϵ 4/ ϵ 4, ϵ 3/ ϵ 4, ϵ 3/ ϵ 3, ϵ 2/ ϵ 3, and ϵ 2/ ϵ 2, were clearly discernible. In our study of patients with cardiovascular and heart diseases the allele frequencies were 0,096, 0,692 and 0,212 for apoE ϵ 2, ϵ 3 ir ϵ 4, respectively. The gene frequencies were: ϵ 2/ ϵ 2 (0,038), ϵ 2/ ϵ 3 (0,096), ϵ 2/ ϵ 4 (0,019), ϵ 3/ ϵ 3 (0,52), ϵ 3/ ϵ 4 (0,25), ϵ 4/ ϵ 4 (0,077).

Keywords: polymorphism, PCR, apolipoproteinE, restriction.

¹ Vytauto Didžiojo universitetas, Vileikos g. 8, LT-44404 Kaunas; tel. (8~650) 11 504; el. paštas: natali22@freemail.lt

² Vytauto Didžiojo universitetas, Vileikos g. 8, LT–44404 Kaunas; tel. (8~687) 58 420; el. paštas: algis paulauskas@fc.vdu.lt