EFFECTS OF ALUMINUM ON DELTA AMINOLEVULINIC ACID DEHYDRATASE IN VIVO AND IN VITRO

Dalė Baranauskienė¹, Loreta Stumylaitė¹, Rima Kregždytė¹, Stanislovas Ryselis¹, Olegas Abdrakhmanovas¹, Andrius Stepaniukas²

¹Institute for Biomedical Research, Kaunas University of Medicine, Eivenių 4, LT-50009 Kaunas, Lithuania tel.: +370 37 302948

Abstract. The present study examined the effect of aluminum on δ-aminolevulinic acid dehydratase (δ-ALAD) and hematocrit, and assessed the effects of zinc and selenium on activity of the enzyme affected by aluminum *in vivo* and *in vitro*. Experiments were done on white laboratory mice of (20-25) g body mass. To assess the effect of aluminum on δ-ALAD *in vivo*, mice injected i.p. with 0.5 LD₅₀ aluminum chloride (AlCl₃) (25 mg Al³⁺/kg body mass). To estimate the effect of zinc and selenium on activity of the enzyme affected by aluminum, twenty minutes before intoxication with 0.5 LD₅₀ aluminum chloride mice were injected i.p. with 0.5 LD₅₀ of sodium selenite (Na₂SeO₃) or with 1.56 mg/kg of zinc sulphate (ZnSO₄). Control animals received an injection of the same volume of saline.

Injection of mice with a single dose of aliuminium significantly increased concentration of metal in blood. However, δ -ALAD activity changed only slightly. Furthermore, addition of zinc before aluminum injection was related to significant increase of aluminum content and a little enhancement of δ -ALAD activity in blood. In blood of mice where selenium additives were used no changes in aluminum concentration or δ -ALAD activity was registered, and level of hematocrit decreased.

The *in vitro* effects of aluminum on δ -ALAD activity in blood of experimental mice were investigated. Concentration causing half-maximal inhibition (IC₅₀) of enzyme activity was used to assess the effects of Al³⁺ on δ -ALAD activity in blood.

The findings suggested that low concentrations of aluminum ions slightly decrease δ -ALAD activity *in vitro*, while high concentrations of aluminum ions inhibited the enzyme. Aluminum ions are medium whereas zinc ions are weak and cadmium ions are strong catalytic poison (IC₅₀ Cd²⁺ < IC₅₀ Al³⁺ < IC₅₀ Zn²⁺). Zinc ions also showed a weak protective effect on inhibition of δ -ALAD caused by aluminum ions, but do not remove it ((IC₅₀ Al³⁺ < IC₅₀ Al³⁺ + Zn²⁺).

Key words: aluminium, zinc, selenium, δ-aminolevulinic acid dehydratase, *in vivo*, *in vitro*.

²Lithuanian Veterinary Academy, Tilžės 18, LT-47181 Kaunas, Lithuania