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Abstract. The purpose of this review is to examine the scientific literature on the effects of heat 
stress on some physiological, productive and reproductive parameters in dairy cows. The article ana-
lyzes the scientific papers in which the influence of heat stress and its impact on some indicators is 
studied. As a result of the review, it became clear that heat stress has an impact on the studied indica-
tors, but there are no clear criteria at which values of temperature-humidity index (THI) this effect is 
registered. The relationship between heat stress, productivity, successive lactation and physiological and 
reproductive parameters in dairy cows is still controversial. This poses a challenge, through research, 
to solve the problems in regards to high temperature and animal welfare and productivity for specific 
climatic conditions.
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Introduction
Heat stress in dairy cows is considered to be a 

combination of environmental factors that cause an 
increase in body temperature and a number of other 
reactions.

Temperature and humidity are considered to be 
the main indicators of the environment. There are 
other additional environmental factors such as air 
velocity and solar radiation that affect the cooling of 
cows under heat stress. In order to take into account 
the impact of all these meteorological conditions and 
their impact on the formation of heat stress, indices 
have been developed to measure the value of this 
stress.

As a result of heat stress in the body of cows, a num-
ber of physiological changes are observed. The main 
ones are changes in body temperature, respiratory rate, 
heart rate, digestive changes, hormonal reactions and 
reactions in the acid-base balance of the body. Under 
the infl uence of heat stress and the physiological-
adaptive processes in cows, there are changes in the 
quantity and quality of milk produced, as well as a 
number of reproductive changes, usually associated 
with deterioration of reproductive performance under 
heat stress.

Despite many studies on the topic of heat stress in 
dairy cows, research continues to this day. Data on the 
impact of heat stress on dairy cows varies, as they are 
conducted in different parts of the world, characterized 
by the specifi cs of climatic characteristics, as well as 
some individual characteristics of reared cows, such as 
breed, productivity and others.

All this makes the issue of heat stress relevant, 
given the search for an adequate response and 
addressing its consequences.

Heat stress in modern cattle breeding
Heat stress is defi ned as a set of external forces 

that act directly on the animal’s body, causing an 
increase in body temperature and inducing a series 
of adaptive responses (Dikmen and Hansen, 2009). 
The steady rise in temperatures and global warming 
(Schär et al., 2004), combined with the signifi cant 
increase in the number of productive animals and 
the intensifi cation of cattle breeding (Renaudeau et 
al., 2012), make heat stress a great challenge and a 
problem for modern farmers. Given the normally 
high heat loads in productive dairy cows caused by 
the large amount of energy used for milk production 
and other physiological needs (Chebel et al., 2004), 
high temperatures and humidity can signifi cantly 
contribute to deterioration in the health status of 
animals and impairment of their comfort (West, 
2003). Not surprisingly, the problem of heat stress 
is most common in geographical areas where the 
summer season is long and prolonged exposure to 
sunlight and high humidity is established (Schüller et 
al., 2014). Animals located in northern geographical 
areas may also be exposed to heat stress, where the 
summer season is shorter but hot enough and there is 
a minimal drop in temperature during the dark part 
of the day. Heat stress leads to signifi cant economic 
losses for farmers, deteriorating many productive, 
reproductive and health indicators in cows.

Environmental parameters influencing as a 
risk factor for heat stress
Cows are able to adapt to changing temperature and 
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humidity conditions throughout the year (Kadzere et 
al., 2002). This is confi rmed by the relatively wide 
range of thermo-neutral conditions found in cattle. 
Temperature fl uctuations in the range of –0.5–
20.0°C and 60–80% relative humidity (West, 2003) 
are generally accepted as a thermo-neutral value that 
does not signifi cantly affect the normal physiology of 
animals. Berman et al. (1985) claim that the upper 
limit of the air temperature at which the basic body 
temperature in cattle can be maintained is 25.0–
26.0°C.

Air temperature and relative humidity are con-
sidered to be the most important factors that 
determine the heat exchange between the animal’s 
body and the environment. Other important elements 
of the microclimate – such as air movement and sun-
light – also play a signifi cant role in inducing a heat 
stress response in animals (West, 2003; Da Silva et 
al., 2010). Changes in air velocity affect convection 
cooling in cows (Davis and Mader, 2003). The 
recommended air velocity for dairy cattle in the 
United States during heat stress is 1.8 to 2.8 m/s 
(Bailey et al., 2016). Berman (2005) believes that 
air velocity is lower when cows move in the barn, so 
measurements do not always refl ect real values. This 
is in line with the study of Herbut (2013) and Hempel 
(2018), which indicated the need for measurements in 
the entire area where the cows are housed, and not just 
in individual points. Kadzere et al. (2002) note that 
during the hot months, maintaining an air velocity 
above 1.0 m/s at high humidity (e.g., by means of 
sprayers) signifi cantly cools the animal’s body.

Solar radiation is one of the leading environmental 
factors affecting ruminants (Schutz et al., 2009). Ra-
diation includes both direct radiation from the sun 
and diffuse radiation received from the sky and/or 
refl ected from clouds (Da Silva et al., 2010). The effects 
of radiation, whether direct, diffuse or refl ected, can 
be a major determinant of the environmental con-
ditions in which cows are reared, mainly in grazing 
(Schutz et al., 2008; Tucker et al., 2008). Studies 
conducted in free barns show signifi cant differences 
in microclimate conditions. These variations are the 
result of the higher air temperature and litter surface 
observed during the day in boxes adjacent to walls 
that are exposed to direct sunlight compared to those 
in the shade (Angrecka and Herbut, 2016).

Many environmental indices have been proposed, 
which are used to measure meteorological conditions. 
Examples are the THI, the Black Globe-Humidity 
Index (BGHI) and the Environmental Sustainability 
Index (ESI). The situation with heat stress has 
been shown to worsen when high relative humidity 
is observed at high air temperatures in the animal 
environment (Hill and Wall, 2015; Herbut et al., 
2018 b). Over the years, two main methods have 
been developed to assess environmental risk factors 
and animal responses to changing environmental 
conditions. The fi rst of them is a variety of different 

indices of temperature and humidity, expressed 
in absolute values, which determine the thermal 
comfort of animals. The second includes algorithms 
expressed in °C. The indices have undergone many 
modifi cations and include different ranges of values 
that determine the threshold levels of heat stress in 
dairy cows.

Physiological changes in the body of animals 
that are affected by the effects of heat stress
Body temperature
The body temperature of cows under 

thermo-neutral conditions is maintained by the 
thermoregulatory system in the range of 38 to 39.2°C 
(Ammer et al., 2016). Under these conditions, the 
heat exchange in the animal’s body (through cell and 
vascular membranes) and the heat exchange with the 
environment are balanced. This process is almost 
always dynamic (Taylor et al., 2014).

When the ambient temperature is elevated, 
mechanisms are activated in the body that aim to 
maintain the homeostasis and temperature status of 
the animals or to regulate them within acceptable 
physiological limits (Werner et al., 2008). The 
mechanisms that release excess heat from the body 
are regulated by the hypothalamus. It receives 
information about fl uctuations in body surface 
temperatures and deeper tissues from receptors 
located on them. Under temperature stress, a rapid 
response is induced, initiated by skin receptors. As 
a result, the central nervous system, the endocrine 
system and peripheral components of the autonomic 
system are activated (Colier et al., 2012).

When thermoregulatory mechanisms prove insuf-
fi cient to dissipate external heat, body temperature 
rises. At values > 39.4°C, a state of hyperthermia 
occurs. Nowadays, temperature changes on the surface 
of the body as well as in the internal body temperature 
can be easily monitored using non-invasive methods 
such as thermography (Godyń et al., 2013; Hoffmann 
et al., 2013; Unruh et al., 2017 , Hristov et al. 2021a; 
Hristov et al. 2021b) or small wireless sensors (Lees et 
al., 2018). Cattle body temperature can be measured 
in various parts of the body, such as the abdomen, 
ear canal and vagina, but the most common method 
of assessing internal body temperature is to measure 
rectal temperature. Lemerle and Goddard (1986) 
found that rectal temperature began to rise at THI 
values > 80. Collier et al. (2006) found that cows 
reared in shady areas had a rectal temperature 0.5°C 
(38.9 to 39.4°C) lower than cows exposed to direct 
sunlight without shade access.

Respiratory rate
Sweating and panting are considered to be the fi rst 

and main reactions of animals to temperature stress. 
Collier et al. (2012) reported that the body of animals 
is in the acute phase of response to heat stress when 
the skin temperature reaches 35°C and the respiratory 
rate is 60–70 dd/min. Lemerle and Goddard (1986) 
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found that the respiratory rate began to increase 
gradually, at THI > 73, and signifi cantly rapidly at 
THI > 80. It has been proven that the value of this 
physiological parameter depends on the amount of 
shade and cooling in the area where the cows are 
raised, their age and the time they spend in an upright 
and lying position. In adult cows, a respiration rate 
of up to approximately 80 breaths per minute has 
been observed (Stevens, 1981). In addition, Collier 
et al. (2006) found that cows kept in shady areas had 
a respiratory rate of 54 breaths per minute, while 
cows without access to shading had 82 breaths per 
minute. Similar results were reported by Eigenberg et 
al. (2005), whose studies found about 16 rpm more 
in cows raised without access to shady areas. Cows 
reared in free barns with a cooling system showed a 
reduction in the number of breaths per minute from 
95 to 57 (West, 2003). Based on studies conducted 
in the afternoon, Chaiyabutr et al. (2008) found that 
cows kept in refrigerated rooms made 64 breaths 
per minute, while cows in uncooled areas made 86 
breaths per minute.

Heart rate
When the animal’s body is exposed to heat, 

cardiac output increases. While the stroke volume 
is maintained or slightly increased, the heart rate 
accelerates signifi cantly and is the main driving force 
behind this process (Johnson and Proppe, 1996). 
Control and regulation of the heart rate in heat 
stimuli may be a consequence of direct irritation 
of high temperature on the sinoatrial node and the 
sympathetic and parasympathetic nerve endings of 
the heart (Wilson and Crandall, 2011). Kovács et al. 
(2018) found that Holstein calves reared in conditions 
of extreme heat load without shade have a higher heart 
rate than calves kept in the shade. Similar results are 
shared by Bun et al. (2018) in a study of dairy cows. 
Dalcin et al. (2016) found that at a BGHI value of 
72, the heart rate began to increase linearly in dairy 
cattle.

Digestion and absorption of nutrients
Digestion is infl uenced by various factors, such as 

the time the animals consume the food, the quality 
of the food, the composition of nutrients, the rate at 
which nutrients pass through the digestive tract and 
the volume of the digestive organs (Ellis et al., 1984). 
All these factors are affected by heat stress. At high 
temperatures, reduced food intake leads to increased 
digestive processes by slowing the movement of food 
in the proventriculus and increasing the volume of 
the rumen (Lippke et al., 1975). These physiological 
changes are more pronounced in animals that 
consume more feed.

Peripheral vasodilation and central vasoconstriction 
lead to a reduced blood fl ow to the proventriculus 
of ruminants (Engelhardt et al., 1977). This in turn 
reduces the plasma fl ow through the portal vein, 
which inhibits nutrient absorption (McGuire et al., 
1989).

Influence of heat stress on hormones in dairy 
cows
The endocrine system, which is a major link in 

the coordination of metabolism, changes signifi cantly 
when animals are under heat stress (Beede et al., 1986). 
Hormones associated with adaptation to heat stress 
are prolactin (PRL), growth hormone (GH), thyroid 
hormones, glucocorticoids, mineralocorticoids, ate-
cholamines, and antidiuretic hormone (ADH). Pro-
lactin is vital for mammogenesis (Buttle et al., 1979), 
lactogenesis (Akers et al., 1981) and to varying 
degrees for galactopoiesis (Wilde et al., 1996). Plasma 
PRL concentrations increase during heat stress in 
dairy cows (Wetteman et al., 1979). Collier et al. 
(1982) suggest that increased PRL is associated with 
increased water and electrolyte requirements when 
animals are exposed to heat stress.

Growth hormone is produced in the anterior 
pituitary gland. It does not perform its functions 
through the target gland, but exerts its effect on 
almost all tissues of the body. Plasma GH levels 
decreased from 18.2 ng/mL in thermo-neutral envi-
ronments to 13.5 ng/mL in heat stress in Jersey cows 
(Mitra et al., 1972). Igono et al. (1988) reported that 
the GH content in the milk of low, medium and 
high productive groups of cows decreased when the 
THI exceeded 70. A decrease in plasma GH was not 
observed in cows reared in thermo-neutral conditions 
subjected to the same diet (McGuire et al., 1989). 
Decreased GH hinders the formation of energy used 
for heat production in the body of animals (Bauman 
et al., 1980). GH also promotes heat production by 
stimulating thyroid activity (Yousef et al., 1966). 
Therefore, decreased secretion of the growth hormone 
is more than a physiological response necessary for 
the survival of homothermic animals at high ambient 
temperatures.

The thyroid gland secretes triiodothyronine (T3) 
and thyroxine (T4). These hormones are essential 
for the regulation of metabolism and have a positive 
correlation with weight gain and tissue formation 
(Magdub et al., 1982). The response of T3 and T4 to 
heat stress is slow and it takes several days to reach 
a constant level of concentration (Silanikove, 2000). 
A decrease in plasma T3 concentrations from 2.2 to 
1.16 ng/mL was reported by Johnson et al. (1988). 
This decrease in thyroid hormones together with the 
decreased level of GH in plasma has a synergistic 
effect in the body’s desire to reduce heat production 
(Yousef et al., 1966).

Acute and chronic heat stress lead to various 
changes in glucocorticoid concentrations. Alvarez and 
Johnson (1973) reported an increase in glucocorticoid 
levels from 2.4 to 3.9 μg/100 mL (62%) by the 
second hour of heat exposure, reaching a peak of 
5.4 μg/100 mL (120%) at the 4th hour, then gradually 
decreasing to the norm of 2.4 μg/100 mL at the 48th  
hour, maintaining this concentration despite the 
continuing thermal irritant. The initial increase in 
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plasma glucocorticoids is due to the activation of an 
adrenocorticotropin-releasing mechanism (ACTH) 
in the hypothalamus by skin thermoreceptors 
(Chowers et al., 1966), while a later decrease to 
normal, despite continued thermal irritation, shows 
negative feedback between increasing glucocorticoid 
concentrations and reporting a decrease in 
glucocorticoid-binding transortin (Lindner, 1964). 
Glucocorticoids act as vasodilators, promoting heat 
loss. They have a stimulating effect on proteolysis 
and lipolysis, thus providing energy to the animal, 
compensating for reduced food intake (Cunningham 
and Klein, 2007).

The relationship between heat stress, plasma 
aldosterone concentration and urinary electrolyte 
excretion has been documented by El-Nouty et 
al. (1980). Plasma aldosterone concentrations 
remained unchanged during the fi rst few hours of 
heat exposure. However, with prolonged exposure, 
it is 40% lower and decreases rapidly in the following 
hours. This decrease in aldosterone levels is due to 
a decrease in serum K levels as a result of increased 
sweat excretion (El-Nouty et al., 1980) and is 
explained by the large difference between ruminants 
and non-ruminants in terms of Na and K during heat 
stress. Non-ruminants excrete sweat with high Na 
concentration and low K concentration (Lippsett et 
al., 1961); unlike ruminants, in which the opposite is 
true. The concentration of catecholamines increases 
in both acute and chronic heat stress. Alvarez and 
Johnson (1973) reported an average increase of 
45% and 42% for short and 91% and 70% for long 
heat exposure for adrenaline and noradrenaline, 
respectively. Allen and Bligh (1969) reported 
that catecholamines activate the sweat glands and 
participate in the regulation of their activity.

Increased plasma osmolarity and decreased blood 
volume lead to secretion of ADH by the pituitary 
gland, which in turn acts on the kidneys, leading 
to water retention (Cunningham and Klein, 2007). 
Increased loss of water through the airways and skin 
of heat-stressed animals results in increased secretion 
of ADH, which is intended to retain water in the body 
and increase its intake (El-Nouty, 1980).

Acid-base balance and heat stress
Cows subjected to heat stress usually show changes 

in acid-base balance as a result of physiological 
reactions accompanying the cooling of the body. 
Frequent respiratory activity and sweating increase 
in proportion to the body’s need for cooling. 
Accelerating respiration increases CO2 loss through 
pulmonary ventilation, reduces the concentration 
of carbonic acid in the blood and upsets the balance 
with bicarbonate, which changes the pH of the blood 
and leads to respiratory alkalosis (Benjamin, 1981). 
Compensation for respiratory alkalosis includes 
increased urinary excretion of bicarbonate (Benjamin, 
1981), which leads to a decrease in its concentration 
in the blood.

Influence of heat stress on productive 
indicators
Amount of milk
Lactating cows are more sensitive to heat stress 

than dry cows. This is due to milk production, which 
signifi cantly speeds up metabolism (Purwanto et al., 
1990). In addition, due to the positive relationship 
between milk production and heat production, cows 
with higher milk yields are more prone to heat stress 
than animals with lower milk yield (Spiers et al., 2004). 
When a cow is under heat stress, adaptive mechanisms 
are activated that reduce the nutrients used for milk 
synthesis (West, 2003; Rhoads et al., 2009). At the 
same time, it speeds up the metabolism caused by 
the activation of the thermoregulatory system. 
Under mild to severe heat stress, the requirements 
for maintaining a normal metabolism can increase 
from 7 to 25% (NRC, 2001), which can lead to a 
signifi cant decline in milk production. Reduced milk 
production is often used in various studies as an 
indicator of reduced welfare of animals that are already 
susceptible to diseases such as mastitis (Gröhn et al., 
2004). Rushen et al. (2001) reported that milk yield 
decreased instantaneously when cows were exposed 
to a stressful or unfamiliar environment. In this 
regard, it is often accepted that milk production can 
be interpreted as a direct indicator of animal welfare 
and can be used by farmers as a way to assess the 
condition of cattle in changes in their environment 
(e.g., increase in ambient temperature or changes in 
diet). Others have challenged milk production as an 
acceptable indicator of well-being (von Keyserlingk et 
al., 2009), especially in cows exposed to heat stress. 
The reason is the delay in registering a decline in 
milk production after the animals have already been 
exposed to high ambient temperatures. Collier et al. 
(1981) reported a delay of 24 to 48 hours from an 
increase in ambient temperature to a decline in milk 
production. Additional evidence provided by Linvill 
and Pardue (1992) indicates that milk production only 
begins to decline when the THI consistently exceeds 
74 for the previous 4 days. From this, it is clear that 
if changes in milk production are detected only on 
days after which the animals have already been under 
heat stress, this measure is limited and at best indirect 
to assess the welfare of cattle (von Keyserlingk et al., 
2009). Despite the identifi ed barriers to the use of milk 
production as an indicator of welfare in dairy cows, 
recent data suggest that changes in milk composition 
may be far more useful in assessing the condition of 
animals exposed to immediate heat stress (Hu et al., 
2016).

Relationship between heat stress, dry matter 
intake and milk production
Many scientifi c publications show a link between 

the occurrence of heat stress and reduced dry matter 
intake (DMI), as this is an immediate adaptive 
response in animals (Kadzere et al., 2002; West, 
2003; Rhoads et al., 2009). The reduced productivity 
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of the animals during heat stress is explained only 
by parts with reduced DMI. Baumgard et al. (2011) 
claim that lower consumption of heat-stressed cattle 
explains only 35–50% of the decline in milk yield. 
According to Slimen et al. (2016), heat stress causes 
a reorganization in the use of body resources such as 
fat, protein and energy. Post-absorption metabolism 
is altered, and this occurs regardless of the decline 
in food intake (Slimen et al., 2016). Noordhuizen 
and Bonnefoy (2015) found a decrease in milk 
production of 600–900 kg of milk per lactating cow 
and a decrease in feed intake with 0.85 kg DMI per 
cow less for each 1° increase in ambient temperature 
C (West, 2003). According to Kadzere et al. (2002), 
DMI in cows can report a decrease of up to 40% when 
the ambient temperature exceeds 30°C, which leads 
to a deterioration of the energy balance. According 
to research by Bouraoui et al. (2002), increasing the 
value of THI from 68 to 78, leads to a decrease in 
DMI by up to 9.6%. In West’s study (2003), food 
intake began to decline one day after the onset of 
heat stress. In addition, West (2003) found a decrease 
in milking 2 days after the animals were under heat 
stress. The study by Herbut et al. (2018), conducted 
in free barns, also revealed a 2- to 4-day delay before 
a decline in milk production was found. Studies 
show that the decline in milk production depends 
on both the strength of the heat wave and the length 
of previous warm periods. The large number of hot 
days in July and August leads to a rapid response of 
animals to subsequent changes in thermal conditions 
in the coming months (Herbut et al., 2018a).

Relationship between heat stress, water intake 
and milk production
Water intake is extremely important for dairy 

cattle. For cows producing 41.5 kg of milk per day 
under thermo-neutral conditions, the water intake is 
about 135 kg per day (Kadzere et al., 2002). Variations 
in water intake are closely related to DMI and milk 
yield, ambient temperature, and relative humidity 
(Cardot et al., 2008). Water for the animals must be 
provided in appropriate quantities and temperatures. 
A 10% decrease in the body’s water supply in cows can 
adversely affect milk production (González Pereyra et 
al., 2010).

Quality composition of milk
Results from studies by various authors (Bouraoui 

et al., 2002; Hammami et al., 2013) also report a direct 
link between heat stress and deterioration in milk 
quality. Poor temperature and humidity conditions 
lead to an increase in the number of somatic cells in 
milk and a decrease in fat and protein (Hammami et 
al., 2013; Lambertz et al., 2014). As THI increases, so 
does the number of somatic cells.

Lipids are one of the main components of milk. 
The dominant fraction of milk fat is TAG (about 
98%), present in the form of fat globules (Mansson, 
2008). In addition to being an energy source, the 
composition of TAG is important for human health 

and the properties of dairy products (Jensen, 2002; 
Palmquist, 2006). The second most important 
fraction of milk fat are polar lipids, which are a major 
structural element of the membrane of fat globules 
and thus play the role of emulsifi er, ensuring the 
stability of the milk emulsion system (Fong et al., 
2007, Sánchez-Juanes et al. 2009). The main classes of 
lactic polar lipids include phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), phosphatidylserine 
(PS), phosphatidylinositol (PI), sphingolinositol (PI), 
sphingomylyscholine LP, lactosylceramide (GC) and 
laczylceramide (2002).

By correlating the meteorological data with the 
characteristics of fatty acids (FA), it was found that 
an increase in THI shows a decrease in the content 
of short-chain and medium-chain fatty acids and an 
increase in long-chain (Hammami et al., 2015). A 
similar conclusion was made in other studies of heat-
stressed cows (Lacetera et al., 2003). However, these 
results have not always been convincing, as the effect 
of heat stress is often confused with different eating 
patterns over the seasons. Regarding the effect of heat 
stress on the TAG profi le and polar lipid composition, 
no information is available.

Influence of heat stress on reproductive 
indicators
The decline in the number of cows bred during 

the summer season can vary between 20 and 30%, 
despite the presence of animals that clearly show 
estrus (De Rensis and Scaramuzzi, 2003). High 
ambient temperatures have a negative effect on a cow’s 
ability to behave naturally during heat, as it reduces 
the duration and intensity of estrous expression 
(Orihuela, 2000). The reason for this is considered to 
be the reduced intake of dry matter and the subsequent 
disturbance in the production of hormones (Westwood 
et al., 2002). An additional reason is the desire 
of man to turn cows from a “seasonal” to a “year-
round” breeding unit. The adverse effects of heat 
stress on the reproductive cycle are year-round, but 
signifi cantly more severe during the summer months. 
Hansen and Aréchiga (1999) report reduced estrus 
in heat-stressed dairy cows. These authors believe 
that heat stress causes physical lethargy, which acts 
as an adaptive mechanism that limits the additional 
heat production of the animal already generated by 
activities during estrus. Additional evidence suggests 
that jumps as an indicator of estrus in beef cattle are 
signifi cantly less in summer than in winter (White 
et al., 2002). A shorter duration of estrus is found 
when European breeds move to the tropics, with 
differences in climate and nutrition (Orihuela, 2000). 
Reproductive indicators are often used as an indicator 
of well-being in heat-stressed cows, as problems 
with animal breeding (De Rensis and Scaramuzzi, 
2003), ovum quality disorders (Roth et al., 2001) and 
abortion or early embryonic mortality (Silanikove, 
2000) are common during these periods. However, 
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these indicators are retrospective in nature and only 
give us information that the animal was already in a 
state of stress. Therefore, these data are of greater value 
in the management of future nurseries and as a means 
of determining the need to implement improved 
strategies to combat heat stress. A more accurate and 
useful indicator for assessing well-being is measuring 
the rectal temperature on the day of insemination. 
Pereira et al. (2013) reported that the chance of 
fertilization up to 60 days registered a decrease from 
21% to 15% at a rectal temperature higher than 
39.1°C found during artifi cial insemination.

Heat stress alters the reactions along the 
hypothalamic-pituitary-ovarian axis
Because the main hormones that regulate ovarian 

function are gonadotropin-releasing hormone from 
the hypothalamus and gonadotropins, luteinizing 
hormone (LH) and follicle-stimulating hormone 
(FSH) from the anterior pituitary gland, some authors 
have investigated the effect of heat secretion on stress. 
Changes in LH concentration under the infl uence of 
heat stress in the peripheral blood are intermittent. 
Some studies report unchanged concentrations 
(Gwazdauskas et al., 1985; Gauthier, 1986), while 
others report an increase (Roman-Ponce et al., 1981) 
and reduced concentrations (Madan and Johnson et 
al., 1973; Wise et al., 1988; Gilad et al., 1993; Lee, 
1993). Regarding the model of LH secretion in cows 
subjected to heat stress, there is a decrease in the 
amplitude of the LH pulse (Gilad et al., 1993) and LH 
pulse, as well as in their frequency (Wise et al., 1988). 
The effect of heat stress on the LH preovulatory peak 
is also controversial: a decrease in the endogenous 
LH peak from heat stress has been reported in 
heifers (Madan and Johnson, 1973) but not in cows 
(Gwazdauskas et al., 1981; Gauthier, 1986; Rosemberg 
et al., 1981). The reasons for these discrepancies are 
unclear. These differences are thought to be related to 
preovulatory estradiol levels, as the amplitude of tonic 
LH impulses and the GnRH-induced preovulatory 
plasma peak of LH are lower in cows with low plasma 
estradiol concentrations but not in cows with high 
plasma concentrations of estradiol (Gilad et al., 1993). 
Plasma inhibin concentrations in summer are lower 
in heat-stressed cows (Wolfenson et al., 1995), which 
may refl ect impaired folliculogenesis, as a signifi cant 
proportion of plasma inhibin comes from small and 
medium-sized follicles. Plasma FSH concentrations 
are higher during the preovulatory period in summer; 
this is associated with lower circulating concentrations 
of inhibin (Ingraham et al., 1974).

Influence of heat stress on gametogenesis and 
embryo
Gametogenesis is sensitive to temperature changes. 

Normal spermatogenesis requires a temperature that 
is below normal body temperature. Recent evidence 

suggests that oocyte development is also sensitive to 
temperature (Rutledge et al., 1999). The negative 
effects of heat stress on fertility may be the result of 
the direct effect of high temperatures on the ovaries 
and the quality of oocytes, respectively.

The intrauterine environment is also compromised 
in cows that are subjected to heat stress; decreased 
blood fl ow to the uterus and increased temperature 
(Roman-Ponce et al., 1978; Gwazdauskas et al., 
1975). These changes inhibit embryonic development 
(Rivera and Hansen, 2001), increase early embryonic 
death, and lead to unsuccessful inseminations. The 
high ambient temperature indicates a negative effect 
on the embryos in the pre-attachment stage (Ray 
et al. 1992), but the degree of this effect decreases 
gradually with the development of the embryo (Ealy 
et al., 1993). Heat stress can affect the endometrium 
of the uterus, leading to premature secretion of 
prostaglandins (Putney et al., 1989), followed by 
luteolysis and fetal loss. Most often, embryonic death 
occurs by the 42nd day.

Influence of heat stress on the development of 
follicles
Heat stress slows follicle expression and prolongs 

follicular wave, leading to adverse effects on oocyte 
quality (Roth et al., 2001; Badinga et al., 1993) and 
follicular steroidogenesis (Roth et al., 2001; Howell 
et al., 1994; Palta et al., 1997). Heat stress suppresses 
the development of dominant follicles, which causes 
more medium-sized follicles to survive (Wolfenson 
et al., 1995; Roth et al., 2000; Wilson et al. 1998; 
Vasconcelos et al., 1998; Badinga et al., 1993). Thus, 
the duration of preovulatory follicle dominance 
increases in summer, which in heifers is negatively 
related to fertility (Mihm et al., 1994). When the 
expression of an individual dominant follicle is 
suppressed, it is possible to develop more than one 
dominant follicle, which is refl ected in twins, which 
can often be observed in summer (Ryan et al., 1991).

Conclusion
As a result of the review, it became clear that 

the topic of heat stress and its impact on dairy cows 
has been widely studied in many parts of the world. 
Despite the many data from various authors, there 
is still no unanimous opinion on which indices 
are the most accurate and at which values   of the 
temperature-humidity index measures need to be 
taken. Particularly interesting is the question of the 
adaptability of dairy cattle to heat stress and its effects 
on their physiological, productive and reproductive 
indicators. Following the review, it is clear that 
research on the issue is likely to continue in order to 
fi nd adequate solutions to the issue of heat stress and 
its impact on dairy cows.
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